Energy - Bayern Innovativ
March 27, 2018 | Author: Anonymous | Category: N/A
Short Description
Download Energy - Bayern Innovativ...
Description
Micro Energy Harvesting Power Supply for Distributed and Embedded Systems
Philipp Bingger and Peter Woias Albert-Ludwig-University of Freiburg Department of Microsystems Engineering (IMTEK) Laboratory for Design of Microsystems Freiburg, Germany
Philipp Bingger, Peter Woias, Effiziente Elekronik, 1.12.2009
Sheet 1
Wire or battery … or what ?
rope
distributed and „embedded“ sensor systems in greenhouses © Crossbow
sensor
tire pressure sensors
medical implants © Vitatron
battery service person (vertigo-proof) Sensors in redwood trees © University of California Philipp Bingger, Peter Woias, Effiziente Elekronik, 1.12.2009
Sheet 2
Micro Energy Harvesting: The Vision wireless data link
Energy-Autonomous Embedded Systems „always on“ no battery recharging or exchange no power cords
sensor input
easy to install … … at numerous application sites wireless microcontroller energy and transmitter
microsensor
system management energy management
heat, light movement, other bugs,…
energy conversion generator
materials and energy storage
energy storage
Philipp Bingger, Peter Woias, Effiziente Elekronik, 1.12.2009
Sheet 3
Micro energy harvesting – IMTEK‘s PhD program Fact sheet
Research topics
financed by DFG and industry 3 associated members 22+1 PhD scholarhips
energy transduction mechanisms materials for energy harvesting energy storage and management system considerations
start: October 2006 run-time: 4.5 years (1st phase) Associated Members
Members
Sponsors
Philipp Bingger, Peter Woias, Effiziente Elekronik, 1.12.2009
Sheet 4
Piezoelectric bending generators: Principle
q = d 31 ⋅ σ piezo,11
dq d (d 31 ⋅ σ 11 ) I = = dt dt
Design challenges homogeneous mechanical stress ¨ higher output power tunable resonance frequency
¨ broader application range, more power
smart system integration
¨ cheaper, easier fabrication
Philipp Bingger, Peter Woias, Effiziente Elekronik, 1.12.2009
Sheet 5
Optimized vibrational piezo generator (2007)
E. Just et al., Proc. GMM-Workshop “Energieautarke Mikrosysteme”, 2006 F. Goldschmidtböing, P. Woias, Journ. Micromech. Microeng. 18, 2008, 104013 spectral output power (no seismic mass)
influence of a seismic mass
Philipp Bingger, Peter Woias, Effiziente Elekronik, 1.12.2009
Sheet 6
Frequency-tunable piezo generator (2008)
Principle
force
Actuation force in the „arms“ will stiffen the resonating beam and thus change its resonance frequency ¨ high tuning range (22%) ¨ loss of Q factor with increasing force C. Eichhorn et al., Proc. PowerMEMS 2008, Sendai, Japan, 309-312. Philipp Bingger, Peter Woias, Effiziente Elekronik, 1.12.2009
Sheet 7
Fabrication: Piezo-Polymer-Composites (2003) feed
vent molding form
electrical contact
piezo disk
piezoceramic disk with metal electrodes
molding form mounting block
liquid thermosetting polymer
20 mm
polymer layer seismic mass vibration
Advantages structure definition and piezo integration in one single step
piezo disk
cured polymer
low-cost perspective via inject molding extremely high design flexibility actuators and generators in one single technology Philipp Bingger, Peter Woias, Effiziente Elekronik, 1.12.2009
Sheet 8
Impact-type piezo generator (2005)
M. Wischke et al., Proc. Transducers 2007, Lyon, France, 875-878.
6 mWp @ 36N pulse (100 ms)
Advantages stress-homogenized hinge design for a maximal output power high output power high output voltage stacked devices for power multiplication
Philipp Bingger, Peter Woias, Effiziente Elekronik, 1.12.2009
Sheet 9
Electromagnetic generators: Principle and examples
rotor generator
U = −N⋅
dΦ dt
P = 800 µW multi-resonant generator Univ. Hongkong, 2002 electromechanic quartz clockwork
battery
Properties AC currents from motion or induced AC fields bad to fair voltage range (mV…V) moderate source impedance (
View more...
Comments